STS/EACTS Latin America Cardiovascular Surgery Conference September 21-22, 2017 | Cartagena, Colombia

info@cardiovascularsurgeryconference.org www.CardiovascularSurgeryConference.org

Minimally Invasive Mitral Valve Repair: The New Gold Standard?

Juan P. Umaña, M.D. Chief Medical Officer Director, Cardiovascular Medicine FCI - Institute of Cardiology Bogota – Colombia

The Society of Thoracic Surgeons

Mitral Valve Repair "The Gold Standard"

Nishimura, RA et al. 2014 AHA/ACC Valvular Heart Disease Guideline

Class I

Mitral valve repair is recommended in preference to mitral valve replacement (MVR) when surgical treatment is indicated for patients with chronic severe primary MR limited to the posterior leaflet (155, 183-198). *(Level of Evidence: B)*

Mitral valve repair is recommended in preference to MVR when surgical treatment is indicated for patients with chronic severe primary MR involving the anterior leaflet or both leaflets when a successful and durable repair can be accomplished (195-197, 199-203). *(Level of Evidence: B)*

Class IIa

Mitral valve repair is reasonable in asymptomatic patients with chronic severe primary MR (stage C1) with preserved LV function (LVEF >60% and LVESD <40 mm) in whom the likelihood of a successful and durable repair without residual MR is greater than 95% with an expected mortality rate of less than 1% when performed at a Heart Valve Center of Excellence

Mitral Valve Procedures - Trends

Number of Mitral Valve Procedures Cumulative over last 10 years

Adult Cardiac Surgery Database. Executive Summary 10 years. STS Period ending 3/31/2017. 3/30/2017 Executive Summariy contents

Early Mitral Valve Repair Clear Benefit

Suri RM et al, Association Between Early Surgical Intervention vs Mitral Valve Leaflets. JAMA 2013; 310(6):609

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Suri RM et al, Association Between Early Surgical Intervention vs Watchful Waiting and Outcomes for Mitral Regurgitation Due to Flail

Trends in Mitral Valve Surgery in the United States: Results From The Society of Thoracic Surgeons Adult Cardiac Database

James S. Gammie, MD, Shubin Sheng, PhD, Bartley P. Griffith, MD, Eric D. Peterson, MD, J. Scott Rankin, MD, Sean M. O'Brien, PhD, and James M. Brown, MD

Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland; Duke Clinical Research Institute, Durham, North Carolina; and Centennial Medical Center, Vanderbilt University, Nashville, Tennesse

Isolated MV repair (n=28,140) operative mortality was 1.2%. For asymptomatic patients, operative mortality was 0.6%.

Gammie JS et al, Ann Thorac Surg 2009;87:1431

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

World Trends in MIVS

Source: Internal market research

Aortic CAGR: 16%* Mitral CAGR: 17%

Trends in MIVS Society of Thoracic Surgeons Database

Gamie et al, Less-invasive mitral valve operations: trends and outcomes from the Society of Thoracic Surgeons Adult Cardiac Surgery Database Ann Thorac Surg 2010;90:1401–10

Minimally Invasive Valve Surgery **Benefits to the Patient**

♦Less pain ♦ Shorter hospital stay ♦Lower blood loss ♦ Faster recovery and return to normal activity ♦Greater satisfaction

Minimally Invasive Valve Surgery Benefits to the Surgeon

\diamond Excellent visualization of structures ♦ Clear sterile field perception \diamond More direct access to the mitral value

The Law of Conservation of Pain (As applied to Minimally Invasive Surgery)

Pain is neither created nor destroyed, it is *transferred* from the *Patient* to the *Surgeon*

Michael Argenziano, M.D.

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Initial Concerns Adult Cardiac Surgery Database

 \diamond Equivalent mortality ♦ Longer CPB and cross-clamp times \diamond Higher repair rates in MIS group \diamond Lower blood transfusions **♦** Significantly higher stroke rate

Less-Invasive Mitral Valve Operations: Trends and Outcomes from the STS

Gammie, et al, Less-invasive mitral valve operations: trends and outcomes from the Society of Thoracic Surgeons Adult Cardiac Surgery Database Ann Thorac Surg 2010;90:1401–10

Minimally Invasive vs. Conventional Mitral Valve Surgery: A Meta-Analysis and Systematic Review

 \diamond Similar mortality between MIVS and conventional \diamond MIVS has higher incidence of: \diamond Aortic Dissection, CVA & Phrenic paralysis \Leftrightarrow MIVS is superior in: \diamond POP AF \diamond Mediastinal drainage \diamond Patient's satisfaction and pain

Cheng DC. Innovations • 2011

Mitral Valve Surgery Right Lateral Minithoracotomy or **Sternotomy?**

\Rightarrow 30-day mortality equivalent for MIS and CS \diamond Lower blood loss \diamond Longer CPB and clamp times

\diamond Higher incidence of vascular complications

Study

Chitwood (1997) Felger (2001) Felger (2001Rob) Gammie (2010) Goldstone (2013) Grossi (2001b) Holzhey (2011) Iribarne (2010) Iribarne (2011) Iribarne (2012) McKnight (2012) Mihaljevic (2011Rob) Neto (2012) Raanani (2010) Suri (2009) Speziale (2011) Stevens (2012) Stevens (2012Rob)

Fixed effect model Random effects model

Sunderman SH, Sromicki J, Rodriguez H, Seifert B, Holubec T, Falk V, Jacobs S. Mitral valve surgery: Right lateral minithoracotomy or sternotomy? A systematic review and meta-analysis. J Thorac Cardiovasc Surg 2014

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Sünderman et al. 2014

0.0% 2.6% 2.6% 12.7% 2.5% 4.0% 8.3% 8.6% 7.7% 6.7% 2.9% 4.0% 0.0% 7.1% 8.6% 4.0% 9.7% 8.1%

> ---100%

What Is the Role of Minimally Invasive Mitral Valve Surgery in High-Risk Patients? A Meta-Analysis of Observational Studies

♦ Comparable early mortality ♦ Lower transfusion requirement ♦ Less atrial fibrillation ♦ Lower stroke

Α

Study or Subgroup

Mihos 2014 Tang 2013 Iribarne 2012 Holzhey 2011 Sharony 2006 Bolotin 2004 Burfeind 2002

Total (95% CI)

Total events Heterogeneity: Tau² = Test for overall effect:

В

Study or Subgroup

Mihos 2014 Tang 2013 Iribarne 2012 Holzhey 2011

Total (95% CI)

Total events Heterogeneity: Tau² = Test for overall effect:

Fig 2. Forest plots of minimally invasive mitral valve surgery (MIMVS) versus standard sternotomy (ST): (A) overall early mortality and (B) highquality studies. (CI = confidence interval.)

Moscarelli, Fattouch, Casula, Speziale, Lancellotti, and Athanasiou. What Is the Role of Minimally Invasive Mitral Valve Surgery in High-Risk Patients? A Meta-Analysis of Observational Studies. Ann Thorac Surg 2016;101:981–9)

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Moscarelli et al.

Favour MIMVS		Favour ST		Odds Ratio			Odds Ratio		
Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M–H, Random, 95% Cl	
1	22	4	28	9.5%	0.29 [0.03, 2.76]	2014	-		
5	90	9	90	17.9%	0.53 [0.17, 1.65]	2013			
5	70	3	105	15.0%	2.62 [0.60, 11.32]	2012			
11	143	9	143	20.0%	1.24 [0.50, 3.09]	2011			
5	100	38	177	19.5%	0.19 [0.07, 0.51]	2006			
2	38	2	33	11.0%	0.86 [0.11, 6.48]	2004			
0	60	21	155	7.1%	0.05 [0.00, 0.87]	2002			
	523		731	100.0%	0.55 [0.23, 1.34]				
29		86							
0.80; $Chi^2 = 15.90$, $df = 6$ (P = 0.01); $I^2 = 62\%$						100			
Z = 1.32 (I	P = 0.1	9)					0.01	Favours [MIMVS] Favours [ST]	100

Favour [MIMVS]		Favour [ST]		Odds Ratio		Odds Ratio				
Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Үеаг		M–H, Rande	om, 95% Cl	
1	22	4	28	10.2%	0.29 [0.03, 2.76]	2014				
5	90	9	90	30.0%	0.53 [0.17, 1.65]	2013				
5	70	3	105	21.0%	2.62 [0.60, 11.32]	2012		-		
11	143	9	143	38.8%	1.24 [0.50, 3.09]	2011		_		
	325		366	100.0%	0.97 [0.45, 2.10]					
22		25								
0.18; Chi ² = 4.25, df = 3 (P = 0.24); l ² = 29%			6		0.01	01	10	100		
Z = 0.08 (P = 0.93)						0.01	Favours [MIMVS]	Favours [STI]	100	

Right Minithoracotomy Versus Full Sternotomy for Mitral Valve Repair: A Propensity Matched Comparison

Lange et al.

Lange, Voss, Kehl, DrRerNat, MazzitelliTassani-Prell, and Gunther, Right Minithoracotomy Versus Full Sternotomy for Mitral Valve Repair: A Propensity Matched Comparison Ann Thorac Surg2017;103:573–9

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Survival after isolated Mitral Valve Repair matched versus unmatched patients

Minimally Invasive vs Conventional Mitral Valve Repair

2011 Cheng

Ao. Diss and Stroke Risk

2010 Gammie

Significantly Higher Stroke Rate

2013 Cao No difference

2014 Sünderman

No difference in neurologic events

More vascular complications

2017 Lange

Similar functional outcome and QOL variables

The Challenge...

♦ AVOID TRANSFERRING THE LEARNING CURVE TO THE PATIENT

$\diamond Minimize \ neurologic \ complications$

Avoid vascular complications

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Minimally Invasive Mitral Valve Repair Learning Curves

A 20

failu

minus

ulative

3

В

lative

-15

-20

15

10

-10

-15

-20

C 20

failures

minus

cumulative

-10

-20

20

75-125 Surgeries to overcome Learning Curve

>50 Surgeries/Year
to mantain competence

number of operations

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

The Question

\diamond Are these results reproducible in smaller centers?

\diamond What about LatAm?

\diamond How to do it?

STS/EACTS Latin America Cardiovascular Surgery Conference 2017

Patients & Methods

 Historical cohort of patients undergoing mitral valve repair between January 2004 and June 2017
 Prospective harvest from July 2008

Inclusion criteria:

First-time isolated mitral valve repairs
 Conventional or minimally invasive
 Dedicated Team

Exclusion criteria

History of preoperative arrhythmias

Mitral Valve Procedures

Sampling Algorithm

Mitral **Procedures** n= 1602

Replacement N=980

Results – Preoperative Variables

VARIABLES	CONVENTIONAL	VA-MIVR	P VALUE Differences between groups
Body mass index Median (IQR)	26.3 (23-29)	24.3 (22.8-26)	0.005
Diabetes mellitus n (%)	1 (1.5)	0	0.374
Hypertension n (%)	29 (44.6)	6 (11.7)	0.0001
Previous myocardial infarction n (%)	1 (1.5)	0	0.374
Previous stroke n (%)	2(3.1)	0	0.206
COPD n (%)	6 (9.2)	0	0.084
Preoperative Blocker n (%)	26 (40)	44(86.3)	0.0001
Preoperative creatinine Median (IQR)	0.9 (0.8-1)	1 (0.9-1.1)	0.005
Ejection fraction Median (IQR)	58.5 (46-64)	60 (55-62)	0.227

Preoperative Euroscore II

Variables Affecting Euroscore II

VARIABLES	CONVENTIONAL	VA-MIVR	P VALUE Differences between groups
Renal Impairment; n (%)	29 (44.6)	20 (39.2)	0.559
NYHA > II; n (%)	53(86.9)	43 (83)	0.892
Pulmonary hypertension; n (%)	35 (72.9)	14 (33.3)	0.0001
Elective; n (%)	48 (74.8)	40 (78.4)	0.557

Intraoperative Results

Primary Outcomes

VARIABLES

C

Bleeding requiring reoperation; n (%)

Deep wound infection; n (%)

Stroke; n (%)

Mortality (%)

Postoperative AF; n (%)

		P VALUE
		Differences
ONVENTIONAL	VA-MIVR	between groups
1 (1.5)	1 (1,9)	0.862
1 (1.5)	0	0.379
1 (1.5)	1	0.862
0	0	_
5 (7.6)	3 (5.1)	0.672

Secondary Outcomes

VARIABLES

ICU stay (hours); Median (IQR)

Transfusion; n (%)

Hospital stay (days); Median (IQR)

		P VALUE
		Differences
		between
CONVENTIONAL	VA-MIVR	groups
24 (24-72)	24 (21-24)	0.0001
35 (38.5)	1 (1.9)	0.0001
6.5 (5-12)	5 (4-8)	0.005

Freedom from Reoperation

Conclusion

- Outcomes are progressively improving Already better than conventional surgery?
- Heart Team Approach Flattens Learning Curve
- Establish Heart Valve Centers of Excellence to Increase Case Volume

STS/EACTS Latin America Cardiovascular Surgery Conference September 21-22, 2017 | Cartagena, Colombia

info@cardiovascularsurgeryconference.org www.CardiovascularSurgeryConference.org

Thank You

The Society of Thoracic Surgeons

